And now solar-powered electric aircraft

- Advertisement -

The sunlight absorption by solar cells is more at high altitudes than on the ground or earth stations. This makes solar systems suitable for powering small aircrafts

B.S. Sastry and B. Ramana

Elektra One—single-seat solar-powered aircraft by SolarWorld (Image courtesy: http://questpointsolarsolutions.com)

Thursday, January 3, 2013: Single- and two-seater aircrafts are now flying in Germany, China and Switzerland. In fact, Germany and USA are planning a whole line of aircrafts powered by solar cells. For propulsion, these aircrafts rely on electric engines (brushless DC motors)—the motors extensively used in the defense and aerospace industries in India.

- Advertisement -

The Li-ion batteries are charged by solar cells, which, in turn, supply electrical energy to the electric engines. High-efficiency solar cells are now available with extra concentrates. Also, solidstate designs that have the poten-tial to deliver three times the energy density at less than half the cost per kWh of the present batteries will be available shortly. With this development, some of the manufacturers are planning four-seater aircrafts.

High-efficiency solar cells
A solar power system converts the sunlight into electricity by using photovoltaic (PV) cells. To improve the efficiency of PV cells, concentrating solar power systems use lenses or mirrors.

The advantage of using solar power systems for aircrafts is that the sunlight absorption by solar cells is higher at high altitudes than on the ground or earth stations. These planes are ideally suited for a country like India which receives abundant solar energy throughout the year. The average solar energy per unit area outside the earth’s atmosphere is ten times that available on the earth’s surface.

Some emerging technologies that can considerably improve energy utilisation efficiency include multijunction cells, optical frequency shifting, multiple-exciton-generation cells, multiple-energy-level cells, hot-carrier cells, concentrating PV systems and hybrid PV systems.

Some emerging technologies that can considerably improve energy utilisation efficiency include multijunction cells, optical frequency shifting, multiple-excitongeneration cells, multiple-energy-level cells, hot-carrier cells, concentrating PV systems and hybrid PV systems 

PV cells having quantised band structure—such as quantum wells and quantum dots—can theoretically be as efficient as 60 per cent. In fact, leadselenide (PbSe) quantum dots have already demonstrated this level of efficiency in laboratories.

Electric propulsion systems
The electric engines are brushless DC motors incorporating high-energy magnets. High-energy magnets are made of neodium-iron-boron or samarium-cobalt, which reduces the motor size while increasing its efficiency.

Hall effect sensors are used for electronic commutation of the motors. Speed control is through a conventional PID controller. All the electronics is enclosed in the motor casing and the motor, along with the controls, is connected through a circular connector.

Electric engines are used in two-seater small planes, miniature helicopters and unmanned aerial vehicles. Light-weight lithium-ion batteries—the energy source—are charged by solar cells mounted on the wings of the aircraft.

The advantages of using brushless DC motors are:
1. Broader speed range

2. Operation in harsh environments and at high altitudes
3. Lower mechanical losses than brush-type motors
4. Extra long life
5. Low current consumption
6. On account of electronic commutation, a brushless system is immune to low humidity and arcing.

The servo amplifiers used to drive the brushless DC motors provide great flexibility for precision motor control with various types of feedback transducers.

While selecting the brushless DC motor, its size, weight and operating range need to be taken into consideration. The operating range torque vs revolutions per minute (rpm) graphs are given by the manufacturer. Since these motors operate at a very high rpm, suitable gear ratios are to be incorporated in the motor.

It is a common practice to incorporate two-three stages of epicyclic gear trains to drive the propellers of the aircrafts.

Lithium-ion batteries
Li-ion batteries are rechargeable batteries for portable applications. These feature one of the best energy densities, no memory effect and slow loss of charge when not in use.

The advantages of using Li-ion batteries for aircrafts are:
1. Compared to other types of secondary batteries, these are very lightweight and have much higher energy densities.
2. A wide variety of shapes and sizes are available for installation in the aircraft.
3. Higher open-circuit voltage than lead-acid and Ni-Cd batteries. This increases the amount of power that can be transferred at a lower current.
4. Self-discharge rate of approximately 5-10 per cent per month compared to over 30 per cent per month in other types of batteries.
5. Components of the battery are environmentally safe.
6. Since solar-powered aircrafts fly at high altitudes where the temperature is low, these do not degrade and last for a long time.

Efforts are underway to improve the power density, recharge cycle and other characteristics of Li-ion batteries.

Ready to take off?
Advances in high-efficiency solar cells and high-energy rare earth magnets of brushless DC motors are contributing significantly to solar-powered electric aircrafts. Li-ion batteries that drive the brushless DC motors with significant power-to-weight ratio are also a major enabler.

Regenerative flight techniques are being used to recharge the batteries during certain modes of flight. In this approach, a propeller using symmetrical blade sections is used as a turbine to recharge the stored energy when the aircraft encounters an updraft. At high altitudes, the energy available from vertical atmospheric motion within a thermal can exceed the available solar power by a factor of ten or more.

The knowledge levels of system integration of multidisciplinary technologies, viz, flight control, flight management systems and landing gear, are available indigenously. It’s time for the Indian industry to take advantage of these skills.

Electronics For You SOUTH ASIA’S MOST POPULAR ELECTRONICS MAGAZINE

- Advertisement -

Most Popular Articles

Automotive car sensor

ISRO Chairman Urges Association With Automotive Industry To Produce Sensors Locally

0
The space research organization is making significant strides in creating indigenous car sensors to empower the automotive industry. At the Bangalore Tech Summit on November...

U.S. Approves $1.5B Subsidy For GlobalFoundries Expansion

0
Winning the $1.5 billion US government subsidy, GlobalFoundries is looking to power industries like automotive, IoT, and defence with advanced chip manufacturing in New...

Trump’s Tariff Plan Could Derange Electronics Pricing

0
From disrupting global semiconductor supply chain to inflating iPhone prices, what can Donald Trump's proposed tariff raise on Chinese imports can cause? Donald Trump,...
Chip Manifacturing-NIvidia

New Blackwell Chip Will Propel Nvidia’s Unprecedented Market Growth In Coming Years

0
These chips have effectively dispelled concerns regarding potential pullbacks from tech giants investing heavily in AI processing and data centers. The global AI backed fabless...

David Goeckeler Appointed Chair Of SIA Board

0
Bringing 40 years of tech experience to lead the global semiconductor industry, David Goeckeler, CEO of Western Digital, joins to lead the SIA Board...
Abhishek Malik from Calcom Vision Limited

“India’s Electronics Sector Is Growing Rapidly, Making This The Decade For Investors To Engage”...

0
From the complexities of manufacturing and sourcing components to testing processes that drive innovation, know all the exciting dynamics shaping this ever-evolving industry in...
Sunit Kapur, CEO of Epsilon

“Epsilon Leads With Low-Carbon Graphite Manufacturing, Outpaces Chinese Competitors” – Sunit Kapur, CEO of...

0
Are LFP cathodes and silicon-graphite anodes the best for cost efficiency in EV batteries? Sunit Kapur, CEO of Epsilon Advanced Materials, discusses this with...
John W. Mitchell, President and CEO, IPC

“India’s Core Focus On 5G, IoT, AI Fosters Need For Advanced Electronics,Components, And Semiconductors”...

0
Will Industry 4.0 supercharge India’s progress in semiconductor and electronics manufacturing? IPC President and CEO John W. Mitchell shared more strategies on the country’s...
Raman M., Co-Founder and CEO, chargeMOD

“Our Goal Is To Achieve Complete Sustainability By 2025-2026” – Raman M. Of chargeMOD

0
In a conversation with Nitisha Dubey from EFY, Raman M. of chargeMOD, elaborated his goal of developing virtual power plants by decentralising power production. Q....

“Adoption Of IoT-Enabled SMT Machines Is Still In Early Phases” – Pradeep Tandon, Director...

0
While electronics are becoming smarter through the Internet of Things, is electronics manufacturing following suit? Pradeep Tandon, Director for India, Middle East, and SAARC...
Applied Materials Representational Image

Applied Materials Selects Six Startups For Deep-Tech Accelerator Programme

0
The selected deep-tech startups will be evaluated for investment by Applied Ventures and potential collaboration opportunities with Applied Materials. In collaboration with the company's India...

Space tech Startup Akash Secures $68M CHIPS Funding

0
Eyeing to power into AI, EVs, and more high-tech industries, Akash Systems lands $68 million CHIPS grant to boost its cooling tech facility, generating...

Wireless Light-Based Communication With Velmenni’s Technology

0
Velmenni is at the forefront of wireless communication innovation with its pioneering light-based technologies, Li-Fi and LC Link. Founded by Deepak Solanki in October 2014...

Harnessing AI Technology For Efficient Pest Management

0
AI-Genix, an agri-tech startup, is transforming pest management for farmers through advanced AI-enabled systems that precisely target harmful pests. In an industry where pesticides and...

One Charger To Charge All Your Devices

0
Now, there is no need to carry different chargers for different products. This Bhubaneswar startup has launched a universal 65W charger using GaN technology...

Industry's Buzz

Learn From Leaders

Startups